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An Extended PCILO Method
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The perturbative configuration interaction using localized orbitals (the PCILO
method) was extended in the way that current limitations to the two-centre
bond approach were overcome. The localized molecular orbitals contain an
arbitrary number of the basis set components; this follows from the a priori
stated localized bonding model of a molecule. The extended PCILO method
was formulated for the CNDO, INDO and NDDO Hamiltonian approxima-
tions. The configuration interaction was performed using the Rayleigh-
Schrédinger many-body perturbation theory with the Mgller—Plesset type of
Hamiltonian partitioning, similar to that used in the so-called modified PCILO
method. Applications to molecules with semi-localized and/or semi-delocal-
ized bonds, as benzene or diborane, are presented.
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1. Introduction

Several years ago a group of authors formulated the concept of the PCILO
(Perturbative Configuration Interaction using Localized Orbitals) method [1-4].
Recently it was revised by other authors missing out the CNDO Hamiltonian
approximation and considering the INDO type [5-8]. At the same time, a
modified PCILO method including transition metal compounds was elaborated
in our Laboratory where either the CNDO-UHF or the INDO-UHF approach
was used for open shell systems [9-12]. This last version differs from the above
in the sense that it is strictly derived from the diagrammatic Rayleigh-Schrodinger
many-body perturbation theory; here the Mgller-Plesset Hamiltonian partition-
ing is used [13] instead of the Epstein-Nesbet type [14, 15].
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The original and also the modified PCILO methods belong to the most popular
quantum-chemical methods (see, for instance, the QCPE “Workshop” in 1980
and 1981 [16]), mainly for the following reasons:

(1) the zero-order wave function is obtained in a way being very near to classical
chemical conceptions of atomic cores, valence lone pairs and the localized
two-centre bonds;

(2) the corresponding computer programs are efficient in the sense that the
delocalization and the correlation energy may be obtained saving of the comput-
ing time [17, 18).

Thus the PCILO method is based on the concept looking at the molecule as a
cluster of “‘two-centre, two-electron fractions” (localized chemical bonds) being
in a mutual interaction. This interaction is treated by the perturbation theory.
The use of the perturbation theory is the very effective way to transform a rather
poor basis set of localized orbitals to a useful molecular wave function including
the electron delocalization and correlation.

The next stage in the development of the PCILO philosophy is the extension
to such a localized MOs approach, where not only the strict localizations (two-
centre bonds and lone lobes) are considered. This is the scope of the present
paper. In the light of this conception the limitations of the original and also of
the modified PCILO methods are overcome. No problems are there in applying
the extended PCILO method to such compounds as benzene or diborane.
However, the expected “working area’ of the method covers large molecules
(over 100 valence AQs) with “active” (e.g. transition metal) centres. These
centres can be described using semi-delocalized MOs while their neighbourhood
is approximated via strictly localized MOs. This model allows the application of
the many-body perturbation theory up to the third order—~in a reasonable
computing time. Therefore, applications of the extended PCILO method to
chemical reactivity and catalysis are expected in near future.

2. Localized Molecular Orbitals

The way of the construction of localized molecular orbitals (LMO) belongs to
the category of external localization methods. Unlike the intrinsic methods, such
as those by Edmiston and Ruedenberg [19-21], Boys [22-24], von Niessen [25]
or Aufderheide [26, 27], the self-consistent-field level of the energy, ESCF (in
the given basis set and the Hamiltonian approximation), is not retained.

The basic idea used here lies in the limitation of the number of the basis set
functions ¥;, usually the hybrid atomic orbitals (HAQ), in the expansion of
individual LMOs ¢, :

$u =2 2" i (1)

(i is an index of HAO on the atom A). In the other words, some of the LCHAO
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expanding coefficients cff,- are fixed having the zero value. This condition is
secured by two assumptions:

(1) a discrete topological function f(A, ) has to be defined a priori; its value is
equal to the ordering number, b, of a chemical bond: f(A, i) =b;

(2) each LMO is assigned to a certain bond; the relation g{w)=>b means that
the uth LMO corresponds to the bth bond.

Then, for the non-zero expanding coefficients it holds:
A A
Cuui = Cuib g(u).fa) 2)

(8 is a Kronecker factor). Thus, each LMO ¢, has a limited number N, of the
basis set components being identical with the numerosity of f(A, /)= g(x). On
the other hand, a sub-set of the basis set functions with the same bond-number
b forms a number N, of LMOs via a linear combination. Such a description is
explained in the following four examples in more detail.

(1) If in a molecule only one many-centre chemical bond is considered, then
g(u) =1 will be valid for all MOs ¢,. Simultaneously it holds that f(A,i)=1
for all A and {, so that all basis set functions contribute to each MO. This is the
case of delocalized (e.g. canonical) MOs.

(2) A natural splitting of the basis set and the set of MOs into two groups is
represented by the o —a separation: for the sub-set of the o type basis set
functions the f(A,i)=1 and g(u €o)=1 are valid while for the sub-group of
the o type functions the relations of f(A, i) =2 and g(u € ) =2 are fulfilled. If
the basis set corresponds to the symmetry orbitals, another natural splitting will
occur: each sub-group of the basis set functions and the corresponding MOs are
represented by individual irreducible representations of the molecular point
group of symmetry (in general this does not exhibit a localized picture).

(3) In the case of strictly localized (two-centre) MOs the bond-size is N, =2.
There exists only one pair of HAOs, ¥ and W7, for which f(A, I)=f(B,j)=b
is valid. Such couple of HAOs is combined into two SLMOs: one bonding and
one antibonding SLMO. For lone lobes it holds that N, =1 and they can be
marked as ‘‘non-connected”” bonds.

(4) Alogical extension is the case of three-centre MOs. A trio of HAOs, ¥, ‘Iff
and ¥§, is used to form three LMOs: one bonding (without a nodal plane), one
non-bonding (with one nodal plane) and one antibonding (with two nodal planes).
Then f(A, i)=f(B, /)=f(C, k) =b and N, =3 are valid. This procedure may be
easily generalized for an arbitrary number of LCHAO components in individual
LMOs. However, unlike the case 1 and 2 the condition (2) corresponds to an
external, a priori limitation in the number of self-consistent-field variables (of
varied LCHAO coefficients or the bond-order matrix elements), so that the best
energy, E¢"'°, obtained by using these LMOs is

E§M° > E5°". (3)
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Taking into account the condition (2), the expression for the charge density
(bond-order) matrix

AB _ % A B

s 5 5

Pi” =Y cuicui’ 4)
Im

has to be modified (s means the spin index, a or G, in the unrestricted Hartree—
Fock approach and p runs over occupied MOs). For new density matrix the
expression is obtained:

spAB _ spAB
Rii" ="Py" 85an.rm.0- &)

This is the modification which must be considered in the construction of the
one-electron effective Fock operator matrix before solving the Roothaan
equations. Moreover, in general, LMOs do not form an orthogonal set. However,
if the ZDO approximation is used (e.g. in the CNDO, INDO or NDDO
framework), this complication will vanish. The corresponding approximation of
two-electron integrals has to be applied to the basis set of atomic orbitals y;'.
Considering the hybridization procedure on the given atom:

vi =Y alix? (©)
then the coulomb integrals are transformed as follows'

(iajalksls) =3 Y % afafat .abu(taualvews). (7)
tu oW

This general transformation may be somewhat simplified; it depends on addi-
tional assumptions accepted in the actual version of the CNDO, INDO or NDDO
method. For example, the inclusion of the metal valence d orbitals (the d —s —p
type basis set) makes the CNDO algorithm more complex in comparison with
the s —p type basis set. In the latter case, due to the orthogonality conditions
for HAOs, the two-electron integrals do not depend on the hybridization:

(iAfA|kBlB) =%YaB 5ij5k1- (8

On the contrary, there are four types of integrals y4p distinguished in the case
of transition metals (i.e. the §—S, S—D, D—S and D —D type [28]) and no

1
(if| k) = (ik| jIy = J’J‘ ¢F (V)% (2)—¢;(1)ps(2) dry dra
ri2
Cike|| 1) = ike| 1) — ik )

lhliy= [ oF @ (1) dr,
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significant simplifications are achieved, for example:

S,

D $,p
(iajalksls) = vas(S—S) Y% attap Y ab.an
t v
s 4 alB B B
+vap(S—D) Y aiay Y Grwlne
t w

d s,p
A A AYCB B B
+vaB(D~8)Y" aiuiu Ay
u v

d d
+yap(D~D)Y* atain Y2 ageat,. 9)

The types of non-zero two-electron integrals between HA Os for various methods
and basis sets used are listed in Table 1. They are coming into the Fock-operator
matrix elements (described often elsewhere). Their final expressions may be
written as follows

FpB =H{? +Y X5, (10

where the individual increments X;, over two-electron integrals are listed in
Table 2 (H;® =(i|h|j) are the matrix elements of the one-electron part of the
Fock operator).

Some remarks are required for the performance of the self-consistent-field
procedure. An important feature of the LCHAO coefficient matrix C is that,
after an appropriate re-ordering, it takes up a block diagonal form. The size of
each block is equal to the number of components per bond N,, so that there is
a one-to-one correspondence between blocks and bonds. For example, in the
benzene molecule the 7 ring is considered as one six-centre bond, thus having
the bond-size N, = 6. Six HAOs (in this case pure AOs) are used to form six
LMOs but only three of them are doubly occupied.

Due to the block-diagonal form of the matrix C, the matrices R and F also take
up the block-diagonal form. Because in the ZDO approximation the overlap

Table 1. The non-zero two-electron integrals between HAOs using various
basis sets of AOs for methods based on the ZDO approximation

Non-zero integrals

Basis
set type Method Orie-center Two-center
s—p CNDO (iaaljaja) (iaialisin)
INDO (iajalkala) (iaialjnis)
NDDO (iaialkals) (iajalkslp)
d~s—p CNDO
INDO (iaialkala) (iajalksls)
NDDO
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Table 2. The increments to the Fock-operator matrix elements over two-electron
integrals

Indices® Increments X;, for the method®

A i A’ i NDDO INDO CNDO
AeT i AeT i X1+X2+XZ X1+X3+XZ X1+X3+X4s;
AZT i AZT i Xi+X,+X: Xi+Xs3+X: Xi+X3+Xs
AeT | AeT § Xe+X:+X5 Xe+Xg+X5; Xet+Xg+Xo
AZT i ALT  § X+ X+ X5 X o

AeT i BeT ] Xil X‘l‘l ';1

AET i BeT i Xi1 Xis i3

ALT i BET i X5 Xia X1

# Atomic indices: A, B; orbital indices: i, . A< T means that A is a transition metal
(d — s —p type element); AZ T —a non-transition metal (s —p type element).
® Individual increments X%, are listed below:

X = Z ZB ZB RkBIB(iAiA|kBlB)
B#A k 1
BeT

X2=B§A§B ZI” R (iaialkslp)
B£LT
X3=B§A %B Rka(iAiA‘kBkB)
BET
Xz=§’* 2,’* [Re* (iaialkals) = "R (ialalkaia)]

X3 =§“‘ R Gaialkaka) = RE(iaialiaia)

Xs= 3 Y7 YP REPliajalksls)
B=A k !
BeT

X7 = BEA %B ZI:B R (iajalksls)
BET

Xs= Y 2% R (iajalkskn)
B#A k
BT

X5 =3 1% [Rid*iajalkala) —"Rii* ialalkaja)l
Xio = —"R§* (inialjafa)

11 = "%B EI:A Rit* (iala| knis)

2= —EI:A ‘R (ialalinis)

13 ‘%B SRE/‘A(’.AI.A|kB]'B)
Xi4 = —"Ri*(iaialiais)

B AB AB
where R5® ="R;®% +°R3"5.



An Extended PCILO Method 185

integral matrix between LMOs is considered to be a unit matrix, the net result
is a full factorization of Roothaan equations into a set of matrix equations:

st(st)T = (st)TSAb (11)

for spin index s =a or 8 (A, is a diagonal matrix of eigenvalues - the orbital
energies). Since individual N,s are many times less than the total basis set size,
saving much of the computing time is achieved in the step of the eigenvalue-
eigenvector problem (each block can be diagonalized independently).

The following algorithm is recommended for the self-consistent-field procedure.
First, the necessary one- and two-electron integrals are calculated in the basis
set of AOs. They are successively transformed into the basis set of HAOs; the
matrix H and the list of two-electron integrals are kept either in the core memory
or on the external data set device. Secondly, the initial approximation of the
matrix C is chosen. Then the density matrix R is obtained using Egs. (4)
and (5). Next, the Fock-operator matrix F® is constructed via Eq. (10) and
Table 2. This matrix is re-ordered so that its block-diagonal form is obtained.
Each block is diagonalized independently and thus the sets of eigenvector
* sub-matrices {C§"} and the eigenvalues sub-vectors {A}"} are obtained. They
are used to form the next approximation of matrix C'”’ and the vector A'”. Then
the vector A'¥ undergoes re-ordering in ascending order of the eigenvalues. The
occupation numbers are attributed to the lowest eigenvalues and the correspond-
ing eigenvectors are used in constructing the next approximation of R M The
procedure is repeated until a self-consistency is achieved.

3. Perturbative Configuration Interaction

In accordance with the arguments suggested for the modified PCILO method
[10-12], the Rayleigh-Schrédinger many-body perturbation theory is preferred
for performing the configuration interaction. The formulae for the electrostatic
correlation energy (using the diagrammatic technique and the Mgller—Plesset
type of Hamiltonian partitioning) were derived elsewhere [11]. Therefore, only
the final result is here briefly presented.

The matrix elements of the one-electron effective Fock operator in the basis set
of molecular spin-orbitals are defined as follows:

Ey =Py = k| p+ X (il k). (12)
Only the diagonal elements

& = (i|Fli) (13)

are considered in the unperturbed Hamiltonian H, while the off-diagonal ele-
ments are included in the perturbation H;. The ground-state electronic energy
is expressed by a series:

oo

Ei= Y Eg’ (14)

n=0



186 R. Boca

where the individual energy terms are:

(1) the zero-order (SCF) energy
E{ =3 Z (iRl +e:) (15)

(2) the first-order correction

EP =0 (16)
(3) the second-order correction

E(Z) _Eg) +E(2) (17)
where

Enm=1 Z (Fia)?/ Dig | (18)

is a part of the delocalization energy, and

E®y=Y % (iflab)/ Diai (19)

iLj ab
being a part of the correlation energy;

(4) the third-order correction

Ey =En w+E5+En, (20)
where
B =3 3 Fa/Di( FucFul De =S, FusF/ Dua) 21)
is the third-order delocalization energy term over two Hugenholtz diagrams,
B2, =3 ¥ Gilab/ D% X (b alei)/ D
+43 Cabled) cdlif)/ Desa +4 5, (bl e/ Drcs) (22)

being the third-order correlation energy term over three Hugenholtz diagrams,
and

oce vir

E®,=Y ¥ <unab>/D,a,b{F,aF,,,(s/D,b +1/Dy)

i,j a,b

- [; (b Fa/ D+ $Ckilab o/ D)

+[E (elab)Fe/ D+ Kifleb) el D) (23)

represents the énergy term over remaining nine Hugenholtz diagrams.
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Here, indices i, j, k, I run over occupied spin-orbitals and a, b, ¢, d over virtual
ones. The denominator parts are defined as Dy, = &; — &, and Dy, = D, + Dy,
Integrating over the spin-coordinates in Eqs. (12)-(23), the separate formulae
for the closed shell and the unrestricted open shell systems can easily be derived.
In certain special cases some simplifications may be obtained. For example, the
CNDO Hamiltonian approximation on the valence s —p basis set of AOs leads
for strictly localized MOs to the significant reduction: the six-fold summation
in term E$Y, simplifies only to three-fold one [11].

4, Computer Program PCILO3

The extended PCILO method was realized by the computer program PCILO3
[29] which exceeds 13 000 cards. Its basic features are briefly mentioned below.

(1) All functions running in the previous level (the modified PCILO method
and the computer program PCILO2 [19]) are included as a part of PCILO3.

(2) The case of delocalized (canonical) MOs is realized with the possibility of a
variable damping procedure (necessary often for transition metal compounds).

(3) There are no principal restrictions for the number of components per LMOs.
Therefore, the last case represents a middle way between above limit cases.

(4) An automatic geometry optimization acts over cartesian or selected bonding
coordinates (bond lengths, bond and dihedral angles). They can be optimized
on the zero-order (SCF) energy, on the second-order delocalization energy, on
the full second-order energy or on the full third-order energy. However, consider-
ing the complicated energy expression in the perturbative configuration interac-
tion, the geometry optimization cannot be based on gradient methods.

(5) The program covers the CNDO/2 parametrization for elements from H to
Br and the INDO parametrization from H to Cu including the first transition
metal row elements. All parameters can be read from cards in a non-standard
run for elements from H to Xe.

(6) The hybrid atomic orbitals may be read or produced by the EMOA method
[30-32].

(7) The case of open shell systems is realized in the unrestricted Hartree~Foch
approach.

(8) The usual software (e.g. IBM) and a current language (FORTRAN IV) were
used as well as the overlay structure.

5. Applications and Discussion
First, two practical questions require an answer:
(1) how to select an appropriate localized bonding model of a molecule;

(2) how to measure its quality.
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Canonical (in principle delocalized) MOs are the most frequently used approach,
because they are the most simple orbitals to calculate the SCF energy. They
also represent a good starting point for the study of excited and ionized states
owing to their proper symmery. However, the net result of the self-consistent-
field procedure is the symmetric bond-order matrix *P, which is invariant with
respect to a unitary transformation of molecular orbitals. Thus, the LMOs
obtained by intrinsic methods of localization produce the same bond-order
matrix. This is a non-scalar (tensor) criterion to measure the quality of external
localization methods. A scalar criterion is, of course, the energy. The localization
defect

Ao = E5F —EGM° (24)
and the relative localization defect
Xioe = Aioc/ BT (25)

may be used to measure the quality of the localization procedure (the subscript
T designates the total molecular energy).

The bond-order matrix can be used in definition of the Wiberg (bond strength)
index Wap [33] which gives a direct information about the multiplicity of a bond
between atoms A and B. The value of Wyp ~1 corresponds to a single bond,
Wag =2 to a double bond, etc. A non-integer value of Wsp = 1.5 indicates that
the concept of localized two-centre bonds fails, so that a semi-delocalized,
many-centre description is required.

The classical example of a compound where the concept of two-centre bonds
fails is the benzene molecule (We_c=1.5). An individual Kekule structure
exhibits the incorrect spatial symmetry of the electronic wave function. The
geometry optimization performed for such a structure leads to the prediction of
the D5, instead of right Ds, symmetry. At least two resonance structures must
be considered in order to obtain an acceptable picture. Additional Dewar-type
structures can be included in a more sophisticated approach via the valence-bond
method. Thus, neither the original, nor the modified PCILO methods can be
successfully applied to aromatic compounds. There are, however, no serious
reasons to restrict ourselves only to the two-centre bond approach.

The systems under study are listed in Table 3; the simplest approach (the
CNDO/2 Hamiltonian approximation and the second-order perturbation theory)
is presented here. In order to describe a bonding model used in a more condensed
form, the following notation was proposed: Ni(n1)/Na(ns)/ -+ - /N, (n,). The first
number N, means the bond-size of equivalent or similar bonds while the second
number n, denotes their numerosity. The results show that the localized bonding
model used is a good starting point to study the molecule: the relative localization
defect is less than 1%. The localization defect is partially compensated in the
second step of the PCILO method; this compensation seems to be satisfactory
since the compensation index:

Xecom = Ef'izt)—m/Aloc (26)
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Table 3. Calculated energy terms using CNDO/2 Hamiltonian

Total energy terms (eV)

Bonding Xioe Xcom

System® HAOs  model -EP -EQ .. ~E?, —EP (%) (%)

H,0 4 2(2)/1(2) 538.23 1.54 0.55  540.31 0.56 51.2
b 4(1)/1(2) 538.68 1.13 0.57  540.38 0.47 444
° 6(1) 541.23 0.0 0.65  541.88

B,H¢ ¢ 3(2)/2(2)/2(2) 340.41 1.49 1.09  343.00 0.56 78.3
© 14(1) 342.31 0.0 1.16  343.47

CeHe ° 6(1)/2(6)/2(6) 1275.47 4.60 549 1285.56 0.48 749
c 30(1) 1281.61 0.0 2461 130621

CuBra™ ¢ 24)/1(5)/1(12)  2641.30°  6.56 0.15 2648.01 034 734
d 8(1)/1(5)/1(12)  2641.44 6.62 0.15 264821 0.33 752
d 13(1)/1(12) 2641.88 f 0.32
© 25(1) 2650.24° f

? Geometries used: H,O in C,, symmetry, Ro_=1.03, XHOH = 104.0°%; B,H; in D5, symmetry,
Rp_p=1.187, Rg_sp= 1.334 (H' as a bridge), £ HBH = 121.5°, Rg_ = 1.770; C¢Hs in D¢, sym-
metry, Rec_¢=1.387, Re_yy = 1.084; CuBr; in Ty symmetry, Re, g, = 2.34. Distances in units of
107 m,

" HAOs fixed by the EMOA method.

¢ Canonical MOs.

9 Canonical HAOs: sp3 on B, Cu and Br.

° The energy slightly differs from that previously reported [12] as a consequence of modification in
the one-center integrals for transition metals. This, however, does not effect conclusions.

£ A degenerate state — PCI not performed.

exceeds 70% . Moreover, the correlation energy secures that in some compounds
the SCF level of the energy can be overcome. Thus, regarding these results the
applicability of the extended PCILO method seems to be well documented.

The case of CuBr;~ requires some more detailed discussion. This is a system
where canonical MOs yield a triply degenerate electronic ground state >T,. A
single determinant type wave function leads to the prediction of unequivalent
ligands: different atomic charges on bromines are obtained in tetrahedral
geometry. On the other hand, this is an example of the Jahn-Teller active system.
As a consequence of the vibronic coupling between the electronic wave function
and e-, t5- and #5- modes of normal vibrations, the adiabatic potential surface
does not exhibit any minimum in the tetrahedral geometry. One of the active
modes which removes the degeneracy and yields the minimum on the adiabatic
potential surface is represented by geometry distortion to the D,, symmetry (a
slightly flattened or elongated bisphenoid along the e¢-mode). The localized
bonding models 2(4)/1(5)/1(12) and 8(1)/1(5)/1(12) with an unpaired electron
on a copper 3d orbital do not exhibit the electronic state of the T, symmetry.
Therefore, the distortion to the D, symmetry does not give here an energy
lowering compared with the optimum tetrahedron, because the vibronic coupling
vanishes. On the contrary, the extended localized bonding model 13(1)/1(12)
with a five-centre thirteen-component “bond” is of the same quality as the case
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Table 4. Calculated energy terms using INDO Hamiltonian

Total energy terms (eV)

Bonding Xioc Xecom

System® HAOs model -EP -E? ,,-E®, —-EP? % %

H,O0 b 2(2)/1(2) 514.94 .71 0.78 517.42 0.60 54.8
b 4(1)/1(2) 515.61 113 0.79 517.53 0.47 46.2
c 6(1) 518.06 0.0  0.83 518.88

B,Hs ¢ 3(2)/2(2)/2(2) 333.63 179 144  336.86 0.67 79.2
c 14(1) 335.89 0.0 1.50 337.40

CeHs ° 6(1)/2(6)/2(6) 1233.64 4.58  6.33  1244.55 0.52 71.3
° 30(1) 1240.06 0.0

CuBr™ ° 24)/1(5)/1(12)  2582.17 9.02 027 2591.47 0.43 80.5
b 8(1)/1(5)/1(12)  2582.37 9.03 0.27 2591.67 0.42 82.1
b 13(1)/1(12) 2582.78 £ 0.41
c 25(1) 2593.38 f

Footnotes a~f see Table 3.

of canonical MOs: the electronic ground state is again >7, and it exhibits an
activity by means of the Jahn-Teller effect. Thus, the choice of an appropriate
bonding model can affect the results obtained not only quantitatively but also
qualitatively. Because of the degeneracy, the use of the degenerate Rayleigh—
Schrodinger many-body perturbation theory is recommended for CuBrj~ in the
>T, state; this approach, however, exceeds the scope of the present paper.

Table 5. Calculated energy (eV) relative to SCF level in various orders of the perturbative CI

Order of PCI CPU time® (s)
Bonding

System®* HAOs model Zero second third SCF PCI

(A) CNDO/2 Hamiltonian

H,0 & 2(2)/1(2) 3.007 0.920 0.911 2 7
e 4(1)/1(2) 2.553 0.850 0.740 2 40
€ 6(1) 0.0 —0.647 —0.870 3 650

B,Hg d 3(2)/2(2)/2(2) 1.903 —0.682 -0.879 7 1600
¢ 14(1) 0.0 -1.157 16 200

(B) INDO Hamiltonian

H;O ° 2(2)/1(2) 3.119 0.630 0.621 3 7
b 4(1)/1(2) 2.448 0.524 0.378 4 42
° 6(1) 0.0 -0.827 -1.121 5 660

B,Hg d 3(2)/2(2)/2(2) 2.265 —0.969 —1.208 8 1600
¢ 14(1) 0.0 —1.505 16 3300

Footnotes a-d see Table 3.
¢ CPU time on IBM 370/148 computer.
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Nearly the same conclusions can be drawn from Table 4 using the INDO
Hamiltonian in the PCILO framework. The localization defect and its compensa-
tion by the second-order delocalization energy are of the same order as for the
CNDO Hamiltonian. On the other hand, the calculated second-order correlation
energy exhibits a systematic trend: it is significantly higher in the absolute value
for the INDO Hamiltonian in comparison with the CNDO Hamiltonian. Thus,
the advantage of a more sophisticated Hamiltonian is expected for molecular
properties derived from the adiabatic potential surfaces, like the equilibrium
geometries or the force constants. Such results will be presented in forthcoming
papers.

Finally, Table 5 illustrates the time consumption of the extended PCILO method
up to the third order of the perturbation theory. It can be concluded: the more
localized bonds, the less the computing time required and vice versa. Thus, the
extended PCILO method allows to find a compromise between computing
facilities and the level of obtaining the electronic wave function or molecular
properties.
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