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The perturbative configuration interaction using localized orbitals (the PCILO 
method) was extended in the way that current limitations to the two-centre 
bond approach were overcome. The localized molecular orbitals contain an 
arbitrary number of the basis set components; this follows from the a priori 
stated localized bonding model of a molecule. The extended PCILO method 
was formulated for the CNDO, INDO and NDDO Hamiltonian approxima- 
tions. The configuration interaction was performed using the Rayleigh- 
Schr6dinger many-body perturbation theory with the M0Uer-Plesset type of 
Hamiltonian partitioning, similar to that used in the so-called modified PCILO 
method. Applications to molecules with semi-localized and/or semi-delocal- 
ized bonds, as benzene or diborane, are presented. 
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1. Introduction 

Several years ago a group of authors formulated the concept of the PCILO 
(Perturbative Configuration Interaction using Localized Orbitals) method [1-4]. 
Recently it was revised by other authors missing out the CNDO Hamiltonian 
approximation and considering the INDO type [5-8]. At the same time, a 
modified PCILO method including transition metal compounds was elaborated 
in our Laboratory where either the CNDO-UHF or the INDO-UHF approach 
was used for open shell systems [9-12]. This last version differs from the above 
in the sense that it is strictly derived from the diagrammatic Rayleigh-Schr6dinger 
many-body perturbation theory; here the M011er-Plesset Hamiltonian partition- 
ing is used [13] instead of the Epstein-Nesbet type [14, 15]. 
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The original and also the modified PCILO methods belong to the most popular 
quantum-chemical methods (see, for instance, the QCPE "Workshop" in 1980 
and 1981 [16]), mainly for the following reasons: 

(1) the zero-order wave function is obtained in a way being very near to classical 
chemical conceptions of atomic cores, valence lone pairs and the localized 
two-centre bonds; 

(2) the corresponding computer programs are efficient in the sense that the 
delocalization and the correlation energy may be obtained saving of the comput- 
ing time [17, 18]. 

Thus the PCILO method is based on the concept looking at the molecule as a 
cluster of "two-centre, two-electron fractions" (localized chemical bonds) being 
in a mutual interaction. This interaction is treated by the perturbation theory. 
The use of the perturbation theory is the very effective way to transform a rather 
poor basis set of localized orbitals to a useful molecular wave function including 
the electron delocalization and correlation. 

The next stage in the development of the PCILO philosophy is the extension 
to such a localized MOs approach, where not only the strict localizations (two- 
centre bonds and lone lobes) are considered. This is the scope of the present 
paper. In the light of this conception the limitations of the original and also of 
the modified PCILO methods are overcome. No problems are there in applying 
the extended PCILO method to such compounds as benzene or diborane. 
However, the expected "working area" of the method covers large molecules 
(over 100 valence AOs) with "active" (e.g. transition metal) centres. These 
centres can be described using semi-delocalized MOs while their neighbourhood 
is approximated via strictly localized MOs. This model allows the application of 
the many-body perturbation theory up to the third o rder - in  a reasonable 
computing time. Therefore, applications of the extended PCILO method to 
chemical reactivity and catalysis are expected in near future. 

2. Localized Molecular Orbitals 

The way of the construction of localized molecular orbitals (LMO) belongs to 
the category of external localization methods. Unlike the intrinsic methods, such 
as those by Edmiston and Ruedenberg [19-21], Boys [22-24]~ von Niessen [25] 
or Aufderheide [26, 27], the self-consistent-field level of the energy, E scF (in 
the given basis set and the Hamiltonian approximation), is not retained. 

The basic idea used here lies in the limitation of the number of the basis set 
functions ~A, usually the hybrid atomic orbitals (HAO), in the expansion of 
individual LMOs ~b, : 

~/z = ~ ~,a A A 
Ct~i~tf i ( 1 )  

A i 

(i is an index of HAO on the atom A). In the other words, some of the LCHAO 
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expanding coefficients c.~ are fixed having the zero value. This condition is 
secured by two assumptions: 

(1) a discrete topological function f (A ,  i) has to be defined a priori; its value is 
equal to the ordering number, b, of a chemical bond: f (A ,  i) = b; 

(2) each LMO is assigned to a certain bond; the relation g(/x)= b means that 
the ~th LMO corresponds to the bth bon d. 

Then, for the non-zero expanding coefficients it holds: 

A A 
C . i  : Cl~i~g(ix) , f (A,i  ) (2) 

(8 is a Kronecker  factor). Thus, each LMO O, has a limited number Nb of the 
basis set components being identical with the numerosity of f (A ,  i)= g(l~). On 
the other hand, a sub-set of the basis set functions with the same bond-number  
b forms a number Nb of LMOs via a linear combination. Such a description is 
explained in the following four examples in more detail. 

(1) If in a molecule only one many-centre chemical bond is considered, then 
g(/.~) = 1 will be valid for all MOs &,. Simultaneously it holds that f (A ,  i) = 1 
for all A and i, so that all basis set functions contribute to each MO. This is the 
case of delocalized (e.g. canonical) MOs. 

(2) A natural splitting of the basis set and the set of MOs into two groups is 
represented by the o--~-  separation: for the sub-set of the or type basis set 
functions the f (A ,  i) = 1 and g(/x ~ or) = 1 are valid while for the sub-group of 
the ~r type functions the relations of f (A ,  i) = 2 and g(/x c ~-) = 2 are fulfilled. If 
the basis set corresponds to the symmetry orbitals, another natural splitting will 
occur: each sub-group of the basis set functions and the corresponding MOs are 
represented by individual irreducible representations of the molecular point 
group of symmetry (in general this does not exhibit a localized picture). 

(3) In the case of strictly localized (two-centre) MOs the bond-size is Nb = 2. 
There  exists only one pair of HAOs,  ~A and ~ ,  for which f (A ,  i) =f(B,])  = b 
is valid. Such couple of HAOs  is combined into two SLMOs: one bonding and 
one antibonding SLMO. For lone lobes it holds that Nb = 1 and they can be 
marked as "non-connected"  bonds. 

(4) A logical extension is the case of three-centre MOs. A trio of HAOs,  ~A, ~ f  
and q~c, is used to form three LMOs" one bonding (without a nodal plane), one 
non-bonding (with one nodal plane) and one antibonding (with two nodal planes). 
Then f (A ,  i) = f (B , j )  =f(C,  k) = b and Nb = 3 are valid. This procedure may be 
easily generalized for an arbitrary number of L C H A O  components in individual 
LMOs. However,  unlike the case 1 and 2 the condition (2) corresponds to an 
external, a priori limitation in the number of self-consistent-field variables (of 
varied L C H A O  coefficients or the bond-order  matrix elements), so that the best 
energy, Eo LM~ obtained by using these LMOs is 

E LM~ > E scF. (3) 
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Taking into account the condition (2), the expression for the charge density 
(bond-order) matrix 

occ 
sp .A .B  v~ s A ' s  B ' s  
-,~ = 2. c , ;  c . i  (4) 

be 

has to be modified (s means the spin index, a or fl, in the unrestricted Hartree- 
Fock approach and ~ runs over occupied MOs). For new density matrix the 
expression is obtained: 

* R  A B  _ ~ o A B  
*~11 - -  1 i ]  ~  (5) 

This is the modification which must be considered in the construction of the 
one-electron effective Fock operator matrix before solving the Roothaan 
equations. Moreover, in general, LMOs do not form an orthogonal set. However, 
if the ZDO approximation is used (e.g. in the CNDO, INDO or NDDO 
framework), this complication will vanish. The corresponding approximation of 
two-electron integrals has to be applied to the basis set of atomic orbitals X A. 
Considering the hybridization procedure on the given atom: 

///A ~,A A A 
= ai, ,Xt  (6) 

t 

then the coulomb integrals are transformed as follows 1 

(iAYAIk#B) = ~ A  ~ B a~aaua~,~a~,w(tAUA[VBWB). (7) 
t,u v,w 

This general transformation may be somewhat simplified; it depends on addi- 
tional assumptions accepted in the actual version of the CNDO, INDO or NDDO 
method. For example, the inclusion of the metal valence d orbitals (the d - s - p  
type basis set) makes the CNDO algorithm more complex in comparison with 
the s - p  type basis set. In the latter case, due to the orthogonality conditions 
for HAOs, the two-electron integrals do not depend on the hybridization: 

( iA jA Ik#B  ) = ~lAB~i]r  (8) 

On the contrary, there are four types of integrals TAB distinguished in the case 
of transition metals (i.e. the S - S ,  S - D ,  D - S  and D - D  type [28]) and no 

(ijlkl)=(iklfl)= f r , , 1 Oi (1)Ok (2)--&j(1)tbz(2) dr1 d~'2 JJ  r12 

<ikl lit) = (iklfl) -{iklty) 

= f &~'(1)n~6,(1) dr~ (ilhl]> 
3 
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significant simplifications are achieved, for example: 

s ,p  s ,p  

( iA fA ikBIB)= .YAB(S_S)} -A  A A 13 13 a i ta#  ~.Bakvalv 
t v 

S~P A A A d v'~ B B B 
+ T A B ( S - - D )  2. a . a ; t  L akwatw 

t Iv 

a ~PB a B a B +yAB(D__s) ~A A A a iua iu/.. kv iv 

d d 
+ 3/AB(D - D )  ~ , A  A A ~"~B B B aiuai,  2. akwalw. (9) 

u w 

The types of non-zero two-electron integrals between H A O s  for various methods 
and basis sets used are listed in Table 1. They are coming into the Foek-opera tor  
matrix elements (described often elsewhere). Their  final expressions may be 
written as follows 

,pAB_,, = HijAB + Y ~ X ~  (10) 
m 

where the individual increments X ~  over two-electron integrals are listed in 
Table 2 ( H  AB = (i[h[]) are the matrix elements of the one-electron part  of the 
Fock operator).  

Some remarks are required for the performance of the self-consistent-field 
procedure.  An important  feature of the L C H A O  coefficient matrix C is that, 
after an appropriate  re-ordering, it takes up a block diagonal form. The size of 
each block is equal to the number  of components  per bond Nb, So that there is 
a one- to-one  correspondence between blocks and bonds. For example,  in the 
benzene molecule the 7r ring is considered as one six-centre bond, thus having 
the bond-size Nb = 6. Six H A O s  (in this case pure AOs) are used to form six 
LMOs  but only three of them are doubly occupied. 

Due  to the block-diagonal form of the matrix C, the matrices R and F also take 
up the block-diagonal form. Because in the Z D O  approximation the overlap 

Table 1. The non-zero two-electron integrals between HAOs using various 
basis sets of AOs for methods based on the ZDO approximation 

Non-zero integrals 
Basis 
set type Method O r / e - c e n t e r  Two-center 

s - p  

d - s - p  

CNDO (iAiAIJaiA) (iAiAI ]RIB) 
INDO (iAJAIkAIA) (iaiAljBjB) 
NDDO ( i A ] A I k A I A )  (ia]AIkBlB) 
CNDO] %0; 
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Table 2. The increments to the Fock-operator matrix elements over two-electron 
integrals 

Indices ~ Increments X ~  for the method b 

A i A'  i' N D D O  I N D O  C N D O  

A e T  i A e T  
A Z  T i A Z  T 
A e T  i A c T  
A Z  T i A Z  T 
A e T  i B e T  
A c T  i B Z T  
A Z T  i B e T  
A~( T i BZ T 

x ,  + x2  + x ~  x~ + x3  + x ~  x~ + x3 + x ~  
xa + x :  + x ~  x~ + x3  + x ~  x~ + x~ + x~  
x 6 + x T + x ~  x 6 + x . + x ~  x 6 + x s + x ~  
X 6  + X 7  + X ~ X ~  X~o 
Xh X~I X~l 
X ~ I  X ~ 2  XSl2 

X~I X~3 X~3 
X J l  X ~ 4  X ~ 4  

a Atomic  indices: A,  B;  orbital indices: i, ]. A e T means that A is a transition metal 
( d - s  - p  type element); A~( T - a  non-transition metal (s - p  type element). 
b Individual increments X ~  are listed below: 

X l  = ~ ~B ~B R~n(iAiAikBlB) 
B # A  k l 
B e T  

X2 = ~ )~B ~ 8  R~fl(iAiA[kBI~) 
B # A  k I 
B g T  

Xa = E E B R~kB(iAiAlkakn) 
B # A  k 
B.~ T 

X4=ZA EA A A . .  ~ A A.  s [ R k l  ( IA tA lkAIA)  - R k l  ( tAIAIkAIA)]  
k I 

X 5 = ~ A  A A . .  s A A  . . . .  s e k  k ( IA IAIkAkA)__  R i  i (ZAtAIIAtA) 
k 

2 6  = ~ E a E B R~ff(iMAlkBIB) 
B ~ A  k l 
B e T  

2 7  = ~ ~B ~B R~tB(iAJAIkBIB) 
B # A  k l 
B ~ T  

X~= ~ ~n g~ff(iMAlkBkn) 
B # A  k 
B Z T  

X ~ = ~ A  E A  A A . .  s A A .  . 
[ R k l  O a J A l k a l ~ )  - gkX  0 A / A I k A J A ) ]  

k l 

s s A A  . . . .  Xlo = - -  Riy  (IAIAI]AJA) 

XSl l  = - - Z  B Z A SRf f lA( iAIAIkBjB)  
k l 

X12 = _ _ ~ A s  A S .  . .  s R~i 0A/altair)  
I 

X l  3 __~B s B A .  , . s R k  i ( t a t A l k n l B )  
k 

s s BA . . . .  
2 1 4  = -  R i i  (IAIAIJB]B) 

~- c t ~ A B  .413I~AB where R ~  B -.ij - --ij �9 
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integral matrix between LMOs is considered to be a unit matrix, the net result 
is a full factorization of Roothaan equations into a set of matrix equations: 

SFb(Scb)T = (SCb)T SA b (11) 

for spin index s = oz or 13 (Ab is a diagonal matrix of eigenvalues- the orbital 
energies). Since individual Nbs are many times less than the total basis set size, 
saving much of the computing time is achieved in the step of the eigenvalue- 
eigenvector problem (each block can be diagonalized independently). 

The following algorithm is recommended for the self-consistent-field procedure. 
First, the necessary one- and two-electron integrals are calculated in the basis 
set of AOs. They are successively transformed into the basis set of HAOs; the 
matrix H and the list of two-electron integrals are kept either in the core memory 
or on the external data set device. Secondly, the initial approximation of the 
matrix C ~~ is chosen. Then the density matrix R r176 is obtained using Eqs. (4) 
and (5). Next, the Fock-operator matrix F <1) is constructed via Eq. (10) and 
Table 2. This matrix is re-ordered so that its block-diagonal form is obtained. 
Each block is diagonalized independently and thus the sets of eigenvector 
sub-matrices {C~ 1) } and the eigenvalues sub-vectors {A~ 1~} are obtained. They 
are used to form the next approximation of matrix C (1) and the vector A <1). Then 
the vector A r undergoes re-ordering in ascending order of the eigenvalues. The 
occupation numbers are attributed to the lowest eigenvalues and the correspond- 
ing eigenvectors are used in constructing the next approximation of R <1). The 
procedure is repeated until a self-consistency is achieved. 

3. Perturbative Configuration Interaction 

In accordance with the arguments suggested for the modified PCILO method 
[10-12], the Rayleigh-Schr/Sdinger many-body perturbation theory is preferred 
for performing the configuration interaction. The formulae for the electrostatic 
correlation energy (using the diagrammatic technique and the M011er-Plesset 
type of Hamiltonian partitioning) were derived elsewhere [11]. Therefore, only 
the final result is here briefly presented. 

The matrix elements of the one-electron effective Fock operator in the basis set 
of molecular spin-orbitals are defined as follows: 

o c c  

F~i = (iIFIj) = (il~lj)+ Z (iklljk). (12) 
k 

Only the diagonal elements 

e, = (ilF[i) (13) 

are considered in the unperturbed Hamiltonian/-to while the off-diagonal ele- 
ments are included in the perturbation/-I1. The ground-state electronic energy 
is expressed by a series: 

E~'= ~ Er ") (14) 
n = O  
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where the individual energy terms are: 

(1) the zero-order (SCF) energy 
occ 

E(o ~ =~ ~ ((i]h]i)+e~) (15) 
i 

(2) the first-order correction 

E~o ~) = 0 (16) 

(3) the second-order correction 

E~o2~ _ ~(2~ • (17) --  L~m_ m ~Jt.~b-- b 

where 
occ vir 

E(2m)-m = E E ( F i a ) 2 / D i a  ( 1 8 )  
i a 

is a part of the delocalization energy, and 

ocr vir 
E(b2_)b ~- ~ ~ ((ijl[ab))2/D~aib ( 1 9 )  

i,j a,b 

being a part of the correlation energy; 

(4) the third-order correction 

E(o3~ __ .-;,,,-,,,t:(3~ 7-~ ~(3~b_b + E~-b (20) 

where 

= Z FJD,o Z FaW~,/D,o- Z F~W~,/ ~o] (21) 
i a c k 

is the third-order delocalization energy term over two Hugenholtz diagrams, 

vir oct vir 

ECb3)-b = ~ a, bT" (ijllab)/Di,qb cb]]kf)(ka]]ci)/Dkcjb 

vir oct ) 
+ ~ ~ (ab ]]cd) (cdllif)/Dicid + ~ ~. (ab ]]kl) (klllif)/Dkcab (22) 

c,d k,l 

being the third-order correlation energy term over three Hugenholtz diagrams, 
and 

E ( 3 )  occ vir {Fi 
m-t, = ~ a, bZ (ijllab)/D~aJb a~'b(3/Djb + 1/D~.) 

_ [ ~c ( ( ijllkb )Fk./ Dk~ + �89 kjllab )F~k/ Dk,qb ) ] 

vir 

represents the energy term over remaining nine Hugenholtz diagrams. 
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Here,  indices i,/', k, l run over occupied spin-orbitals and a, b, c, d over virtual 
ones. The denominator  parts are defined as Dia = e i -  ea and Diajb =Dia +Djb. 
Integrating over the spin-coordinates in Eqs. (12)-(23), the separate formulae 
for the closed shell and the unrestricted open shell systems can easily be derived. 
In certain special cases some simplifications may be obtained. For example, the 
CNDO Hamiltonian approximation on the valence s - p  basis set of AOs leads 
for strictly localized MOs to the significant reduction: the six-fold summation 
in term E ~ b  simplifies only to three-fold one [11]. 

4. Computer Program PCILO3 

The extended PCILO method was realized by the computer program PCILO3 
[29] which exceeds 13 000 cards. Its basic features are briefly mentioned below. 

(1) All functions running in the previous level (the modified PCILO method 
and the computer program PCILO2 [19]) are included as a part of PCILO3.  

(2) The case of delocalized (canonical) MOs is realized with the possibility of a 
variable damping procedure (necessary often for transition metal compounds). 

(3) There  are no principal restrictions for the number of components per LMOs. 
Therefore,  the last case represents a middle way between above limit cases. 

(4) An automatic geometry optimization acts over cartesian or selected bonding 
coordinates (bond lengths, bond and dihedral angles). They can be optimized 
on the zero-order  (SCF) energy, on the second-order delocalization energy, on 
the full second-order energy or on the full third-order energy. However,  consider- 
ing the complicated energy expression in the perturbative configuration interac- 
tion, the geometry optimization cannot be based on gradient methods. 

(5) The program covers the C N D O / 2  parametrization for elements from H to 
Br and the INDO parametrization from H to Cu including the first transition 
metal row elements. All parameters can be read from cards in a non-standard 
run for elements from H to Xe. 

(6) The hybrid atomic orbitals may be read or produced by the E M O A  method 
[30-32]. 

(7) The case of open shell systems is realized in the unrestricted Har t ree-Foch 
approach. 

(8) The usual software (e.g. IBM) and a current language (FORTRAN IV) were 
used as well as the overlay structure. 

5. Applications and Discussion 

First, two practical questions require an answer: 

(1) how to select an appropriate localized bonding model of a molecule; 

(2) how to measure its quality. 
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Canonical (in principle delocalized) MOs are the most frequently used approach, 
because they are the most simple orbitals to calculate the SCF energy. They 
also represent a good starting point for the study of excited and ionized states 
owing to their proper symmery. However, the net result of the self-consistent- 
field procedure is the symmetric bond-order matrix sp, which is invariant with 
respect to a unitary transformation of molecular orbitals. Thus, the LMOs 
obtained by intrinsic methods of localization produce the same bond-order 
matrix. This is a non-scalar (tensor) criterion to measure the quality of external 
localization methods. A scalar criterion is, of course, the energy. The localization 
defect 

A rr~ SCF __ELMO (24) 
loc ~--- -1~'0 

and the relative localization defect 

-- A / E  sCF (25) 
X l o c  - l o c /  T 

may be used to measure the quality of the localization procedure (the subscript 
T designates the total molecular energy). 

The bond-order matrix can be used in definition of the Wiberg (bond strength) 
index WAB [33] which gives a direct information about the multiplicity of a bond 
between atoms A and B. The value of WAB ~ 1 corresponds to a single bond, 
WAn = 2 to a double bond, etc. A non-integer value of WAn ~ 1.5 indicates that 
the concept of localized two-centre bonds fails, so that a semi-delocalized, 
many-centre description is required. 

The classical example of a compound where the concept of two-centre bonds 
fails is the benzene molecule (Wc_c~l .5) .  An individual Kekule structure 
exhibits the incorrect spatial symmetry of the electronic wave function. The 
geometry optimization performed for such a structure leads to the prediction of 
the D3h instead of right D6h symmetry. At least two resonance structures must 
be considered in order to obtain an acceptable picture. Additional Dewar-type 
structures can be included in a more sophisticated approach via the valence-bond 
method. Thus, neither the original, nor the modified PCILO methods can be 
successfully applied to aromatic compounds. There are, however, no serious 
reasons to restrict ourselves only to the two-centre bond approach. 

The systems under study are listed, in Table 3; the simplest approach (the 
CNDO/2 Hamiltonian approximation and the second-order perturbation theory) 
is presented here. In order to describe a bonding model used in a more condensed 
form, the following notation was proposed: Nl(nl ) /N2(n2) /"  �9 �9  (nx). The first 
number Nx means the bond-size of equivalent or similar bonds while the second 
number nx denotes their numerosity. The results show that the localized bonding 
model used is a good starting point to study the molecule: the relative localization 
defect is less than 1%. The localization defect is partially compensated in the 
second step of the PCILO method; this compensation seems to be satisfactory 
since the compensation index: 

S c o m  ~__. 1G '(2) / n  ~r~--,~/~loc (26) 
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Table 3. Calculated energy terms using CNDO/2 Hamiltonian 
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Total energy terms (eV) 
Bonding Xloc X~om 

System a HAOs model --E(T ~ --E(2m) rn--E(b2)-b-E(~ ) (%) (%) 

H20 b 2(2)/1(2) 538.23 1.54 0.55 540.31 0.56 51.2 
b 4(1)/1(2) 538.68 1.13 0.57 540.38 0.47 44.4 
c 6(1) 541.23 0.0 0.65 541.88 

BaH6 a 3(2)/2(2)/2(2) 340.41 1.49 1.09 343.00 0.56 78.3 
c 14(1) 342.31 0.0 1.16 343.47 

C6H6 b 6(1)/2(6)/2(6) 1275.47 4.60 5.49 1285.56 0.48 74.9 
c 30(1) 1281.61 0.0 24.61 1306.21 

CuBr]- d 2(4)/1(5)/1(12) 2641.30 e 6.56 0.15 2648.01 0.34 73.4 
a 8(1)/1(5)/1(12) 2641.44 6.62 0.15 2648.21 0.33 75.2 
d 13(1)/1(12) 2641.88 f 0.32 

25(1) 2650.24 e f 

a Geometries used: H20 in Cz~ symmetry, Ro_n = 1.03, 4HOH = 104.0~ B2H6 in D2h symmetry, 
RB--n = 1.187, RB--rr = 1.334 (H' as a bridge), ~_HBH = 121.5 ~ RB--B = 1.770; C6H 6 in D6h sym- 
metry, Rc -c  = 1.387, Rc--H = 1.084; CuBr]- in Tu symmetry, Rcu-B~ = 2.34. Distances in units of 
10--~o m. 
b HAOs fixed by the EMOA method. 
c Canonical MOs. 
d Canonical HAOs: sp 3 on B, Cu and Br. 
e The energy slightly differs from that previously reported [12] as a consequence of modification in 
the one-center integrals for transition metals. This, however, does not effect conclusions. 
A degenerate state-PCI not performed. 

exceeds  7 0 % .  M o r e o v e r ,  the  co r re l a t ion  ene rgy  secures  tha t  in some  c o m p o u n d s  
the  S C F  level  of the  ene rgy  can be  ove rcome .  Thus,  r ega rd ing  these  resul ts  the  
app l i cab i l i ty  of the  e x t e n d e d  P C I L O  m e t h o d  seems  to be  well  d o c u m e n t e d .  

T h e  case of C u B r ] -  r equ i res  some  m o r e  de t a i l ed  discussion.  This  is a sys tem 
w h e r e  canonica l  M O s  yie ld  a t r ip ly  d e g e n e r a t e  e lec t ron ic  g round  s ta te  2T2. A 
single d e t e r m i n a n t  type  wave  func t ion  leads  to the  p red i c t i on  of une qu iva l e n t  
l igands:  d i f ferent  a tomic  charges  on  b r o m i n e s  are  o b t a i n e d  in t e t r a h e d r a l  
g e o m e t r y .  O n  the  o the r  hand ,  this is an example  of the  J a h n - T e l l e r  act ive system.  
A s  a consequence  of the  v ib ron ic  coupl ing  b e t w e e n  the  e lec t ron ic  wave  funct ion  
and  e-, t~- and  t~- m o d e s  of n o r m a l  v ibra t ions ,  the  ad iaba t i c  po t en t i a l  sur face  
does  no t  exhib i t  any  m i n i m u m  in the  t e t r a h e d r a l  geome t ry .  O n e  of the  act ive 
m o d e s  which r emoves  the  d e g e n e r a c y  and  yields  the  m i n i m u m  on the  ad iaba t i c  
po t en t i a l  sur face  is r e p r e s e n t e d  by  g e o m e t r y  d i s to r t ion  to the  D2d s y m m e t r y  (a 
s l ightly f l a t t ened  or  e l o n g a t e d  b i s p h e n o i d  a long the  e - m o d e ) .  The  loca l ized  
b o n d i n g  m o d e l s  2 (4 ) / 1 (5 ) / 1 (12 )  and 8 (1 ) /1 (5 ) /1 (12 )  with an u n p a i r e d  e lec t ron  
on  a c o p p e r  3d  o rb i t a l  do  no t  exhib i t  the  e lec t ron ic  s ta te  of the  T2 symmet ry .  
The re fo r e ,  the  d i s to r t ion  to the  D z a  s y m m e t r y  does  no t  give he re  an ene rgy  
lower ing  c o m p a r e d  with the  o p t i m u m  t e t r a h e d r o n ,  because  the  v ib ron ic  coupl ing  
vanishes .  O n  the  con t ra ry ,  the  e x t e n d e d  loca l ized  b o n d i n g  m o d e l  13(1) /1 (12)  
wi th  a f ive-cen t re  t h i r t e e n - c o m p o n e n t  " b o n d "  is of the  same  qual i ty  as the  case  
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Table 4. Calculated energy terms using INDO Hamiltonian 

R. Bo6a 

Total energy terms (eV) 
Bonding Xlo~ Scorn 

System a HAOs model _E(~ ~(2~ _E~b22b E(~ - ~ m - , .  - % % 

H/O b 2(2)/1(2) 514.94 1.71 0.78 517.42 0.60 54.8 
b 4(1)/1(2) 515.61 1.13 0.79 517.53 0.47 46.2 

6(1) 518.06 0.0 0.83 518.88 
B2H6 d 3(2)/2(2)/2(2) 333.63 1.79 1.44 336.86 0.67 79.2 

14(1) 335.89 0.0 1.50 337.40 
C 6 H 6  b 6(1)/2(6)/2(6) 1233.64 4.58 6.33 1244.55 0.52 71.3 

30(1) 1240.06 0.0 
CuBr 2- b 2(4)/1(5)/1(12) 2582.17 9.02 0.27 2591.47 0.43 80.5 

b 8(1)/1(5)/1(12) 2582.37 9.03 0.27 2591.67 0.42 82.1 
b 13(1)/1(12) 2582.78 f 0.41 
c 25(1) 2593.38 

Footnotes a-f see Table 3. 

of  c a n o n i c a l  M O s :  t h e  e l e c t r o n i c  g r o u n d  s t a t e  is aga in  ZT2 a n d  it exh ib i t s  an  

ac t iv i ty  by  m e a n s  of  t h e  J a h n - T e l l e r  ef fect .  T h u s ,  t h e  c h o i c e  of  an  a p p r o p r i a t e  

b o n d i n g  m o d e l  can  a f fec t  t h e  resu l t s  o b t a i n e d  n o t  o n l y  q u a n t i t a t i v e l y  b u t  a l so  

q u a l i t a t i v e l y .  B e c a u s e  of  t h e  d e g e n e r a c y ,  t h e  use  of  t h e  d e g e n e r a t e  R a y l e i g h -  

S c h r 6 d i n g e r  m a n y - b o d y  p e r t u r b a t i o n  t h e o r y  is r e c o m m e n d e d  fo r  C u B r  2-  in t h e  

2T2 s t a t e ;  this  a p p r o a c h ,  h o w e v e r ,  e x c e e d s  t h e  s c o p e  of  t h e  p r e s e n t  p a p e r .  

T a b l e  5. Calculated energy (eV) relative to SCF level in various orders of the perturbative CI 

Order of PCI CPU time e (s) 
Bonding 

System a HAOs model zero second third SCF PCI 

(A) CNDO/2 Hamiltonian 

H20 b 2(2)/1(2) 3.007 0.920 0.911 2 7 
b 4(1)/1(2) 2.553 0.850 0.740 2 40 
c 6(1) 0.0 --0.647 --0.870 3 650 

B~H6 d 3(2)/2(2)/2(2) 1.903 --0.682 --0.879 7 1600 
c 14(1) 0.0 --1.157 16 200 

(B) INDO Hamiltonian 

HzO b 2(2)/1(2) 3.119 0.630 0.621 3 7 
b 4(1)/1(2) 2.448 0.524 0.378 4 42 
c 6(1) 0.0 --0.827 --1.121 5 660 

B2H6 d 3(2)/2(2)/2(2) 2.265 --0.969 --1.208 8 1600 
c 14(1) 0.0 --1.505 16 3300 

Footnotes a-d see Table 3. 
e CPU time on IBM 370/148 computer. 
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Nearly the same conclusions can be drawn from Table 4 using the INDO 
Hamiltonian in the PCILO framework. The localization defect and its compensa- 
tion by the second-order delocalization energy are of the same order as for the 
CNDO Hamiltonian. On the other hand, the calculated second-order correlation 
energy exhibits a systematic trend: it is significantly higher in the absolute value 
for the INDO Hamiltonian in comparison with the CNDO Hamiltonian. Thus, 
the advantage of a more sophisticated Hamiltonian is expected for molecular 
properties derived from the adiabatic potential surfaces, like the equilibrium 
geometries or the force constants. Such results will be presented in forthcoming 
papers. 

Finally, Table 5 illustrates the time consumption of the extended PCILO method 
up to the third order of the perturbation theory. It can be concluded: the more 
localized bonds, the less the computing time required and vice versa. Thus, the 
extended PCILO method allows to find a compromise between computing 
facilities and the level of obtaining the electronic wave function or molecular 
properties. 
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